Invited Expert Review Molecular Analysis of Legume Nodule Development and Autoregulation
نویسندگان
چکیده
Legumes are highly important food, feed and biofuel crops. With few exceptions, they can enter into an intricate symbiotic relationship with specific soil bacteria called rhizobia. This interaction results in the formation of a new root organ called the nodule in which the rhizobia convert atmospheric nitrogen gas into forms of nitrogen that are useable by the plant. The plant tightly controls the number of nodules it forms, via a complex root-to-shoot-to-root signaling loop called autoregulation of nodulation (AON). This regulatory process involves peptide hormones, receptor kinases and small metabolites. Using modern genetic and genomic techniques, many of the components required for nodule formation and AON have now been isolated. This review addresses these recent findings, presents detailed models of the nodulation and AON processes, and identifies gaps in our understanding of these process that have yet to be fully explained.
منابع مشابه
Molecular analysis of legume nodule development and autoregulation.
Legumes are highly important food, feed and biofuel crops. With few exceptions, they can enter into an intricate symbiotic relationship with specific soil bacteria called rhizobia. This interaction results in the formation of a new root organ called the nodule in which the rhizobia convert atmospheric nitrogen gas into forms of nitrogen that are useable by the plant. The plant tightly controls ...
متن کاملSystemic regulation of soybean nodulation by acidic growth conditions.
Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNAR...
متن کاملSystemic Regulation of Soybean Nodulation by Acidic Growth Conditions1[OA]
Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNAR...
متن کاملSymbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms
The special issue "Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms" aims to investigate the physiological and biochemical advances in the symbiotic process with an emphasis on nodule establishment, development and functioning. The original research articles included in this issue provide important information regarding novel aspects of nodule metabolism and v...
متن کاملA Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation
N-acyl homoserine lactones (AHLs) act as quorum sensing signals that regulate cell-density dependent behaviors in many gram-negative bacteria, in particular those important for plant-microbe interactions. AHLs can also be recognized by plants, and this may influence their interactions with bacteria. Here we tested whether the exposure to AHLs affects the nodule-forming symbiosis between legume ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010